Essential Features of Classroom Inquiry and Its Variations | Essential Feature | Variations | | | | |---|--|---|---|---| | 1. Learner
engages in
scientifically
oriented
questions | Learner poses a question | Learner selects
among questions,
poses new
questions | Learner sharpens
or clarifies
question provided
by teacher,
materials, or other
source | Learner engages
in question
provided by
teacher, materials,
or other source | | 2. Learner gives priority to evidence in responding to questions | Learner
determines what
constitutes
evidence and
collects it | Learner directed
to collect certain
data | Learner given data
and asked to
analyze | Learner given data
and told how to
analyze | | 3. Learner formulate explanations from evidence | Learner
formulates
explanation after
summarizing
evidence | process of
formulating | Learner given possible ways to use evidence to formulate explanation | Learner provided with evidence and how to use evidence to formulate explanation | | 4. Learner connects explanations to scientific knowledge | Learner independently examines other resources and forms the links to explanations | Learner directed
toward areas and
sources of
scientific
knowledge | Learner given
possible
connections | | | 5. Learner
communicates
and justifies
explanations | Learner forms reasonable and logical argument to communicate explanations | Learner coached in development of communication | Learner provided broad guidelines to use sharpen communication | Learner given
steps and
procedures for
communication | | More ———————————————————————————————————— | | | | | National Research Council. (2000). *Inquiry and the National Science Education Standards:*A Guide for Teaching and Learning. National Academy Press: Washington, DC. # SK Science Curriculum Learning Contexts ### • Scientific Inquiry Reflects an emphasis on understanding the natural and constructed world using systematic empirical processes that lead to the formation of theories that explain observed events and that facilitate prediction. #### • Technological Problem-Solving o Reflects an emphasis on addressing human and social needs by designing and building to solve practical problems. ### • STSE Decision Making Reflects the need to engage citizens in thinking about human and world issues through a scientific lens in order to inform and empower decision-making by individuals, communities, and society. ## • Cultural Perspectives Reflects a humanistic perspective on examining and understanding the knowledge systems that other cultures use, and have used, to describe and explain the natural world. # **Levels of Inquiry** (Banchi and Bell, 2008) | Level | Students are provided with: | Useful for: | |--------------|--|---| | Confirmation | Question
Procedure
Results are know in advance | Reinforcing previously introduced ideas Introducing students to experiments Having students practice a specific skill | | Structured | Question
Procedure | Observing and recording data Creating conclusions based on evidence | | Guided | Question | Observing and recording data Developing procedures Creating conclusions based on evidence | | Open | | Observing and recording data Developing questions Developing procedures Creating conclusions based on evidence | Banchi, H., & Bell, R. (2008, October). The Many Levels of Inquiry, *Science and Children*, 46(2), 26-29